

## **Product Description**

The PE4210 UltraCMOS™ RF Switch is designed to cover a broad range of applications from 10 MHz to 3 GHz. This singlesupply switch integrates on-board CMOS control logic driven by a simple, single-pin CMOS or TTL compatible control input. Using a nominal +3-volt power supply, a typical input 1 dB compression point of +14 dBm can be achieved. The PE4210 also exhibits input-output isolation of better than 35 dB at 1000 MHz and is offered in a small 8-lead MSOP package.

The PE4210 is manufactured on Peregrine's UltraCMOS™ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

# **Product Specification PE4210**

## SPDT UltraCMOS™ RF Switch 10 MHz - 3 GHz

#### **Features**

- Single 3-volt power supply
- Low Insertion loss: 0.30 dB at 1000 MHz, 0.45 dB at 2000 MHz
- High isolation of 35 dB at 1000 MHz, 25 dB at 2000 MHz
- Typical input 1 dB compression point of +14.5 dBm
- Single-pin CMOS or TTL logic control
- Packaged in a small 8-lead MSOP

Figure 1. Functional Diagram

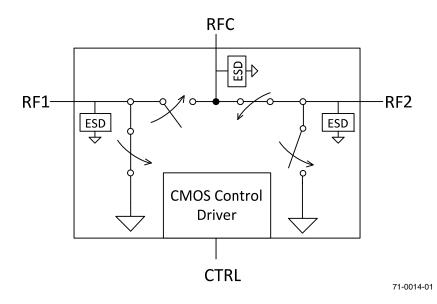



Figure 2. Package Type 8-lead MSOP





Table 1. Electrical Specifications @ +25 °C,  $V_{DD}$  = 3 V ( $Z_S$  =  $Z_L$  = 50  $\Omega$ )

| Parameter                        | Conditions                        |              | Тур          | Max          | Units     |
|----------------------------------|-----------------------------------|--------------|--------------|--------------|-----------|
| Operating Frequency <sup>1</sup> |                                   | 10           |              | 3000         | MHz       |
| Insertion Loss                   | 1000 MHz<br>2000 MHz              |              | 0.30<br>0.45 | 0.40<br>0.60 | dB<br>dB  |
| Isolation – RFC to RF1/RF2       | 1000 MHz<br>2000 MHz              | 34.5<br>24.5 | 35.5<br>25   |              | dB<br>dB  |
| Isolation – RF1 to RF2           | 1000 MHz<br>2000 MHz              | 36.5<br>25.5 | 37.5<br>26.5 |              | dB<br>dB  |
| Return Loss                      | 1000 MHz<br>2000 MHz              |              | 24.5<br>16   |              | dB<br>dB  |
| 'ON' Switching Time              | CTRL to 0.1 dB final value, 2 GHz |              | 200          |              | ns        |
| 'OFF' Switching Time             | CTRL to 25 dB isolation, 2 GHz    |              | 90           |              | ns        |
| Video Feedthrough <sup>2</sup>   |                                   |              | 2.5          |              | $mV_{pp}$ |
| Input 1 dB Compression           | 2000 MHz                          | 13           | 14.5         |              | dBm       |
| Input IP3                        | 2000 MHz, 5 dBm                   | 30           | 33.5         |              | dBm       |

Notes: 1. Device linearity will begin to degrade below 10 MHz.

## **Table 2. DC Electrical Specifications**

| Parameter                                                                           | Min                  | Тур | Max                  | Units |
|-------------------------------------------------------------------------------------|----------------------|-----|----------------------|-------|
| V <sub>DD</sub> Power Supply Voltage                                                | 2.7                  | 3.0 | 3.3                  | V     |
| I <sub>DD</sub> Power Supply Current (V <sub>DD</sub> = 3 V, V <sub>CNTL</sub> = 3) |                      | 250 | 500                  | nA    |
| Control Voltage High                                                                | 0.7x V <sub>DD</sub> |     |                      | ٧     |
| Control Voltage Low                                                                 |                      |     | 0.3x V <sub>DD</sub> | V     |

<sup>2.</sup> The DC transient at the output of any port of the switch when the control voltage is switched from Low to High or High to Low in a 50  $\Omega$  test set-up, measured with 1 ns risetime pulses and 500 MHz bandwidth.



Figure 3. Pin Configuration (Top View)

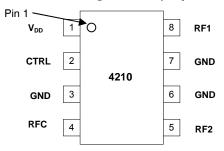



Table 3. Pin Descriptions

| Pin No. | Pin Name         | Description                                                                                                                     |  |  |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1       | V <sub>DD</sub>  | Nominal 3 V supply connection. A bypass capacitor (100 pF) to the ground plane should be placed as close as possible to the pin |  |  |
| 2       | CTRL             | CMOS or TTL logic level:<br>High = RFC to RF1 signal path<br>Low = RFC to RF2 signal path                                       |  |  |
| 3       | GND              | Ground connection. Traces should be physically short and connected to ground plane for best performance.                        |  |  |
| 4       | RFC              | Common RF port for switch <sup>1</sup>                                                                                          |  |  |
| 5       | RF2              | RF2 port <sup>1</sup>                                                                                                           |  |  |
| 6       | GND              | Ground connection. Traces should be physically short and connected to ground plane for best performance.                        |  |  |
| 7       | GND              | Ground connection. Traces should be physically short and connected to ground plane for best performance.                        |  |  |
| 8       | RF1 <sup>1</sup> | RF1 port                                                                                                                        |  |  |

Note 1. All RF pins must be DC blocked with an external series capacitor or held at 0 V<sub>DC</sub>.

Table 4. Absolute Maximum Ratings

| Symbol                        | Parameter/Conditions        | Min  | Max            | Units |
|-------------------------------|-----------------------------|------|----------------|-------|
| $V_{DD}$                      | Power Supply Voltage        | -0.3 | 4.0            | ٧     |
| Vı                            | Voltage on any input        | -0.3 | $V_{DD} + 0.3$ | ٧     |
| T <sub>ST</sub>               | Storage temperature range   | -65  | +150           | ô     |
| T <sub>OP</sub>               | Operating temperature range | -40  | +85            | ô     |
| P <sub>IN</sub>               | Input power (50 Ω)          |      | 18             | dBm   |
| V <sub>ESD</sub> <sup>1</sup> | HBM ESD Voltage             | 200  |                | V     |

Note: 1. Human Body Model ESD Voltage (HBM, MIL\_STD 883 Method 3015.7)

Exceeding absolute maximum ratings may cause permanent damage. Functional operation should be restricted to the limits in the DC Electrical Specifications table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

### **Electrostatic Discharge (ESD) Precautions**

When handling this UltraCMOS™ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

## **Latch-Up Avoidance**

Unlike conventional CMOS devices, UltraCMOS™ devices are immune to latch-up.

**Table 5. Control Logic Truth Table** 

| Control Voltage         | Signal Path |
|-------------------------|-------------|
| CTRL = CMOS or TTL High | RFC to RF1  |
| CTRL = CMOS or TTL Low  | RFC to RF2  |

#### **Control Logic**

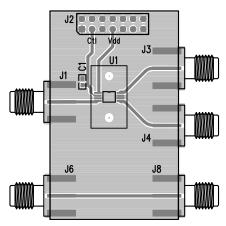
The control logic input pin (CTRL) is typically driven by a 3-volt CMOS logic level signal, and has a threshold of 50% of V<sub>DD</sub>. For flexibility to support systems that have 5-volt control logic drivers, the control logic input has been designed to handle a 5-volt logic HIGH signal. (A minimal current will be sourced out of the V<sub>DD</sub> pin when the control logic input voltage level exceeds V<sub>DD</sub>.)

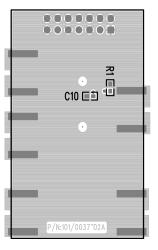
#### **Moisture Sensitivity Level**

The Moisture Sensitivity Level rating for the PE4210 in the 8-lead 3 x 3 mm MSOP package is MSL1.

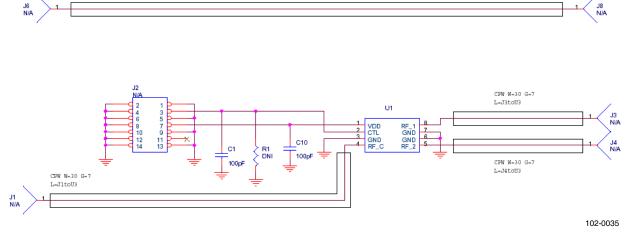


#### **Evaluation Kit**


The SPDT Switch Evaluation Kit board was designed to ease customer evaluation of the PE4210 SPDT switch. The RF common port is connected through a 50  $\Omega$  transmission line to the top left SMA connector, J1. Port 1 and Port 2 are connected through 50  $\Omega$  transmission lines to the top two SMA connectors on the right side of the board, J3 and J4. A through transmission line connects SMA connectors J6 and J8. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.


The board is constructed of a two metal layer FR4 material with a total thickness of 0.031". The bottom layer provides ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide model with a trace width of 0.030", trace gaps of 0.007", dielectric thickness of 0.028", metal thickness of 0.0014" and  $\varepsilon_r$  of 4.4. Note that the predominate mode for these transmission lines is coplanar waveguide with a ground plane.

J2 provides a means for controlling DC and digital inputs to the device. Starting from the lower left pin, the second pin to the right (J2-3) is connected to the device CTRL input. The fourth pin to the right (J2-7) is connected to the device  $V_{\text{DD}}$  input. A decoupling capacitor (100 pF) is provided on both CTRL and  $V_{\text{DD}}$  traces. It is the responsibility of the customer to determine proper supply decoupling for their design application. Removing these components from the evaluation board has not been shown to degrade RF performance.


Figure 5. Evaluation Board Schematic

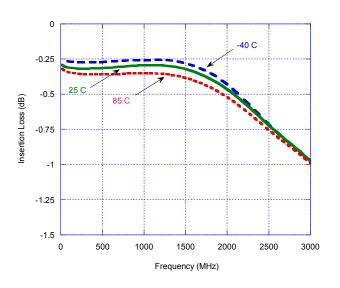






101-0037




L=J6toJ8



## Typical Performance Data @ -40 °C to 85 °C (unless otherwise noted)

Figure 6. Insertion Loss - RFC to RF1

Figure 7. Input 1 dB Compression Point & IIP3



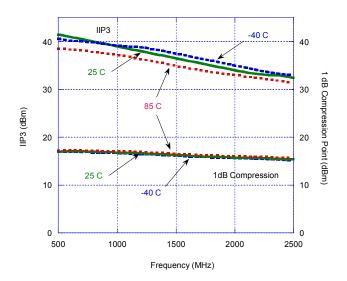
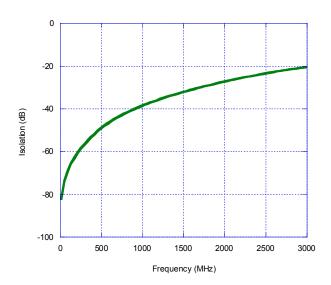




Figure 8. Insertion Loss – RFC to RF2

0 40 C -0.25 -0.5 Insertion Loss (dB) -0.75 -1 -1.25 -1.5 500 1000 1500 2000 2500 3000 Frequency (MHz)

Figure 9. Isolation - RFC to RF1 T = 25 °C





## Typical Performance Data @ 25 °C

Figure 10. Isolation – RFC to RF2

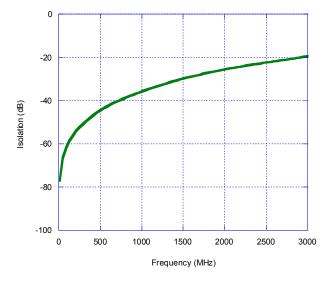



Figure 11. Isolation - RF1 to RF2, RF2 to RF1

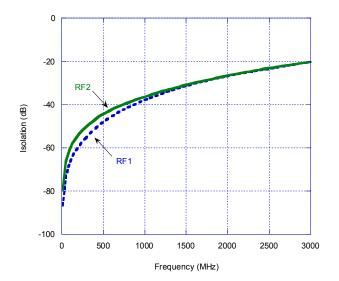



Figure 12. Return Loss – RFC to RF1, RF2

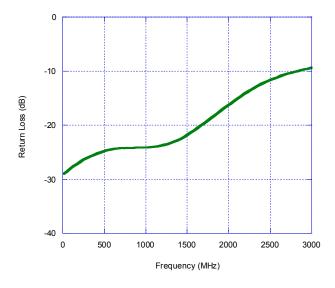
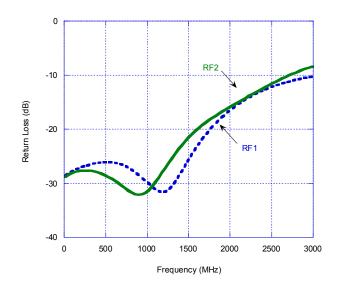
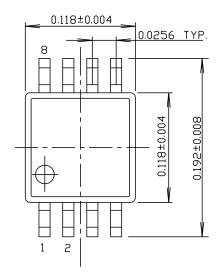
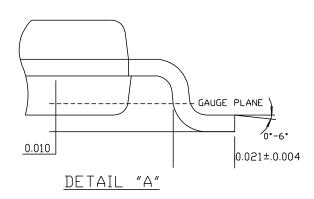



Figure 13. Return Loss - RF1, RF2

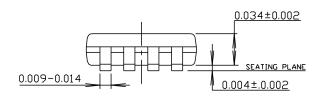



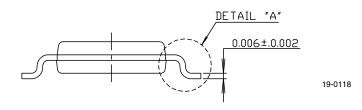

Figure 14. Package Drawing

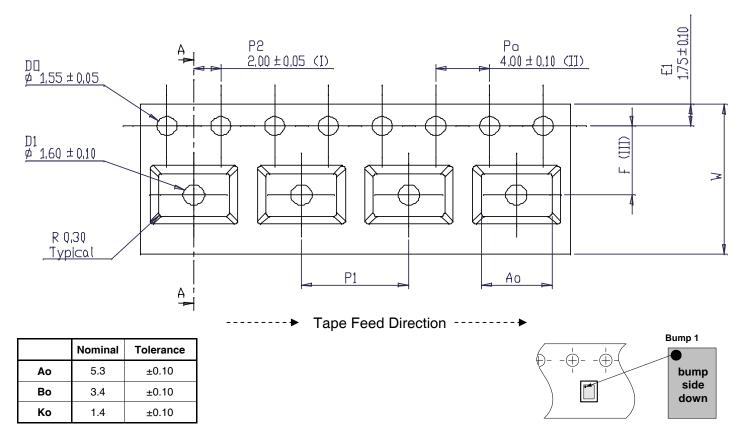
8-lead MSOP











Figure 15. Marking Specifications



LLLL = Last four digits of the Assembly lot number YWW = Date Code, last digit of the year and work week



## Figure 16. Tape and Reel Drawing



Notes: Units are millimeters Drawings not drawn to scale

**Table 6. Ordering Information** 

| Order Code | Part Marking | Description Package  |                   | Shipping Method  |  |
|------------|--------------|----------------------|-------------------|------------------|--|
| 4210-00    | PE4210-EK    | PE4210-08MSOP-EK     | Evaluation Kit    | 1 / Box          |  |
| 4210-52    | 4210         | PE4210G-08MSOP-2000C | Green 8-lead MSOP | 2000 units / T&R |  |

#### **Sales Contact and Information**

For sales and contact information please visit www.psemi.com.

Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. <u>Preliminary Specification:</u> The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. **Product Specification:** The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant. or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

Device Orientation in Tape